Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 724
Filtrar
1.
RNA ; 30(5): 548-559, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38531647

RESUMO

N 1-methyl adenosine (m1A) is a widespread RNA modification present in tRNA, rRNA, and mRNA. m1A modification sites in tRNAs are evolutionarily conserved and its formation on tRNA is catalyzed by methyltransferase TRMT61A and TRMT6 complex. m1A promotes translation initiation and elongation. Due to its positive charge under physiological conditions, m1A can notably modulate RNA structure. It also blocks Watson-Crick-Franklin base-pairing and causes mutation and truncation during reverse transcription. Several misincorporation-based high-throughput sequencing methods have been developed to sequence m1A. In this study, we introduce a reduction-based m1A sequencing (red-m1A-seq). We report that NaBH4 reduction of m1A can improve the mutation and readthrough rates using commercially available RT enzymes to give a better positive signature, while alkaline-catalyzed Dimroth rearrangement can efficiently convert m1A to m6A to provide good controls, allowing the detection of m1A with higher sensitivity and accuracy. We applied red-m1A-seq to sequence human small RNA, and we not only detected all the previously reported tRNA m1A sites, but also new m1A sites in mt-tRNAAsn-GTT and 5.8S rRNA.


Assuntos
RNA de Transferência , RNA , Humanos , Metilação , RNA de Transferência/química , RNA/genética , tRNA Metiltransferases/genética , tRNA Metiltransferases/metabolismo , Metiltransferases/metabolismo , RNA Mensageiro/genética
2.
J Exp Clin Cancer Res ; 43(1): 44, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326863

RESUMO

BACKGROUND: m6A modification is currently recognized as a major driver of RNA function that maintains cancer cell homeostasis. Long non-coding (Lnc) RNAs control cell proliferation and play an important role in the occurrence and progression of colorectal cancer (CRC). ZCCHC4 is a newly discovered m6A methyltransferase whose role and mechanism in tumors have not yet been elucidated. METHODS: The EpiQuik m6A RNA methylation kit was used to detect the level of total RNA m6A in six types of digestive tract tumors. The Kaplan-Meier method and receiver operating characteristic curve were used to evaluate the prognostic and diagnostic value of the newly discovered m6A methyltransferase, ZCCHC4, in CRC. The effects on CRC growth in vitro and in vivo were studied using gain- and loss-of-function experiments. The epigenetic mechanisms underlying ZCCHC4 upregulation in CRC were studied using RIP, MeRIP-seq, RNA pull-down, and animal experiments. RESULTS: We reported that the ZCCHC4-LncRNAGHRLOS-KDM5D axis regulates the growth of CRC in vitro and in vivo. We found that ZCCHC4 was upregulated in primary CRC samples and could predict adverse clinical outcomes in patients with CRC. Mechanistically, ZCCHC4 downregulated LncRNAGHRLOS to promote CRC tumorigenesis. As a downstream molecule of LncRNAGHRLOS, KDM5D directly controls CRC cell proliferation, migration, and invasion. CONCLUSION: This study suggests that the ZCCHC4 axis contributes to the tumorigenesis and progression of CRC and that ZCCHC4 may be a potential biomarker for this malignancy.


Assuntos
Adenina , Neoplasias Colorretais , RNA Longo não Codificante , Animais , Humanos , Adenina/análogos & derivados , Carcinogênese/genética , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Neoplasias Colorretais/patologia , Regulação para Baixo , Epigênese Genética , Histona Desmetilases/genética , Metiltransferases/metabolismo , Antígenos de Histocompatibilidade Menor , RNA , RNA Longo não Codificante/genética , tRNA Metiltransferases/genética , tRNA Metiltransferases/metabolismo
3.
Pathol Res Pract ; 254: 154987, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38237400

RESUMO

The cell proliferation protein 123 (CDC123) is involved in the synthesis of the eukaryotic initiation factor 2 (eIF2), which regulates eukaryotic translation. Although CDC123 is considered a candidate oncogene in breast cancer, its expression and role in Hepatocellular Carcinoma (HCC) remain unknown. Herein, we obtained the CDC123 RNA-seq and clinical prognostic data from the TCGA database. The mRNA level revealed that CDC123 was highly expressed in HCC patients, and Kaplan-Meier analysis implied better prognoses in HCC patients with low CDC123 expression (P < 0.001). The multivariate Cox analysis revealed that the CDC123 level was an independent prognostic factor (P < 0.001). We further confirmed a high CDC123 expression in HCC cell lines. Additionally, we found that CDC123 knockdown in HCC cell lines significantly inhibited cellular proliferation, invasion, and migration. Moreover, CDC123 was co-expressed with the CDK5 Regulatory Subunit-Associated Protein 1 Like 1 (CDKAL1), whose mRNA level was decreased after silencing CDC123. Therefore, we hypothesized that CDC123 promotes HCC progression by regulating CDKAL1.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Proliferação de Células/genética , Prognóstico , RNA Mensageiro , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , Movimento Celular/genética , tRNA Metiltransferases/genética , tRNA Metiltransferases/metabolismo
4.
RNA ; 30(2): 171-187, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38071471

RESUMO

In Saccharomyces cerevisiae, a single homolog of the tRNA methyltransferase Trm10 performs m1G9 modification on 13 different tRNAs. Here we provide evidence that the m1G9 modification catalyzed by S. cerevisiae Trm10 plays a biologically important role for one of these tRNA substrates, tRNATrp Overexpression of tRNATrp (and not any of 38 other elongator tRNAs) rescues growth hypersensitivity of the trm10Δ strain in the presence of the antitumor drug 5-fluorouracil (5FU). Mature tRNATrp is depleted in trm10Δ cells, and its levels are further decreased upon growth in 5FU, while another Trm10 substrate (tRNAGly) is not affected under these conditions. Thus, m1G9 in S. cerevisiae is another example of a tRNA modification that is present on multiple tRNAs but is only essential for the biological function of one of those species. In addition to the effects of m1G9 on mature tRNATrp, precursor tRNATrp species accumulate in the same strains, an effect that is due to at least two distinct mechanisms. The levels of mature tRNATrp are rescued in the trm10Δmet22Δ strain, consistent with the known role of Met22 in tRNA quality control, where deletion of met22 causes inhibition of 5'-3' exonucleases that catalyze tRNA decay. However, none of the known Met22-associated exonucleases appear to be responsible for the decay of hypomodified tRNATrp, based on the inability of mutants of each enzyme to rescue the growth of the trm10Δ strain in the presence of 5FU. Thus, the surveillance of tRNATrp appears to constitute a distinct tRNA quality control pathway in S. cerevisiae.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Exonucleases/metabolismo , Fluoruracila/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo , RNA de Transferência de Triptofano/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , tRNA Metiltransferases/genética , tRNA Metiltransferases/metabolismo
5.
Med Princ Pract ; 33(1): 56-65, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38029727

RESUMO

PURPOSE: The expression and regulatory mechanism of NSUN6 in lung cancer are still unclear. Our study explored whether NSUN6 mediates progression of lung cancer by affecting NM23-H1 expression in an m5C-dependent manner. METHODS: qRT-PCR, CCK-8, colony formation, transwell, and Western blot analysis were employed to probe the impact of NSUN6 on lung cancer cell proliferation, migration, and epithelial-mesenchymal transition (EMT). RMVar database was utilized to forecast the downstream genes of NSUN6. The mode of interaction between NSUN6 and NM23-H1 was determined by dot blot, luciferase assay, m5C RIP, and cell function assays. The effect of NSUN6 expression on tumor growth was verified in vivo. RESULTS: Expression of NSUN6 was reduced in lung cancer cells, and over-expression of NSUN6 restricted the proliferation of lung cancer cells, migration, and EMT. NSUN6 regulated NM23-H1 expression by modifying the 3'-UTR of NM23-H1 mRNA through m5C and inhibited lung cancer cell proliferation, migration, and EMT. In vivo experiments also showed that over-expression of NSUN6 inhibited the occurrence of lung cancer. CONCLUSION: NSUN6 regulates NM23-H1 expression in an m5C-dependent manner to affect EMT in lung cancer. Thus, NSUN6 may be considered as a potential therapeutic target for lung cancer.


Assuntos
Transição Epitelial-Mesenquimal , Neoplasias Pulmonares , tRNA Metiltransferases , Humanos , Linhagem Celular Tumoral , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , tRNA Metiltransferases/metabolismo , Nucleosídeo NM23 Difosfato Quinases/metabolismo
6.
Acc Chem Res ; 56(24): 3595-3603, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38048440

RESUMO

ConspectusTransfer ribonucleic acid (tRNA) is the most highly modified RNA species in the cell, and loss of tRNA modifications can lead to growth defects in yeast as well as metabolic, neurological, and mitochondrial disorders in humans. Significant progress has been made toward identifying the enzymes that are responsible for installing diverse modifications in tRNA, revealing a landscape of fascinating biological and mechanistic diversity that remains to be fully explored. Most early discoveries of tRNA modification enzymes were in model systems, where many enzymes were not strictly required for viability, an observation somewhat at odds with the extreme conservation of many of the same enzymes throughout multiple domains of life. Moreover, many tRNA modification enzymes act on more than one type of tRNA substrate, which is not necessarily surprising given the similar overall secondary and tertiary structures of tRNA, yet biochemical characterization has revealed interesting patterns of substrate specificity that can be challenging to rationalize on a molecular level. Questions about how many enzymes efficiently select a precise set of target tRNAs from among a structurally similar pool of molecules persist.The tRNA methyltransferase Trm10 provides an exciting paradigm to study the biological and mechanistic questions surrounding tRNA modifications. Even though the enzyme was originally characterized in Saccharomyces cerevisiae where its deletion causes no detectable phenotype under standard lab conditions, several more recently identified phenotypes provide insight into the requirement for this modification in the overall quality control of the tRNA pool. Studies of Trm10 in yeast also revealed another characteristic feature that has turned out to be a conserved feature of enzymes throughout the Trm10 family tree. We were initially surprised to see that purified S. cerevisiae Trm10 was capable of modifying tRNA substrates that were not detectably modified by the enzyme in vivo in yeast. This pattern has continued to emerge as we and others have studied Trm10 orthologs from Archaea and Eukarya, with enzymes exhibiting in vitro substrate specificities that can differ significantly from in vivo patterns of modification. While this feature complicates efforts to predict substrate specificities of Trm10 enzymes in the absence of appropriate genetic systems, it also provides an exciting opportunity for studying how enzyme activities can be regulated to achieve dynamic patterns of biological tRNA modification, which have been shown to be increasingly important for stress responses and human disease. Finally, the intriguing diversity in target nucleotide modification that has been revealed among Trm10 orthologs is distinctive among known tRNA modifying enzymes and necessitates unusual and likely novel catalytic strategies for methylation that are being revealed by biochemical and structural studies directed toward various family members. These efforts will no doubt yield more surprising discoveries in terms of tRNA modification enzymology.


Assuntos
Proteínas de Saccharomyces cerevisiae , tRNA Metiltransferases , Humanos , tRNA Metiltransferases/química , tRNA Metiltransferases/genética , tRNA Metiltransferases/metabolismo , Saccharomyces cerevisiae/metabolismo , Metilação , Proteínas de Saccharomyces cerevisiae/química , RNA de Transferência/metabolismo
7.
Methods Enzymol ; 692: 69-101, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37925188

RESUMO

Transfer RNA (tRNA) delivers amino acids to the ribosome and functions as an essential adapter molecule for decoding codons on the messenger RNA (mRNA) during protein synthesis. Before attaining their proper activity, tRNAs undergo multiple post-transcriptional modifications with highly diversified roles such as stabilization of the tRNA structure, recognition of aminoacyl tRNA synthetases, precise codon-anticodon recognition, support of viral replication and onset of immune responses. The synthesis of the majority of modified nucleosides is catalyzed by a site-specific tRNA modification enzyme. This chapter provides a detailed protocol for using mutational profiling to analyze the enzymatic function of a tRNA methyltransferase in a high-throughput manner. In a previous study, we took tRNA m1A22 methyltransferase TrmK from Geobacillus stearothermophilus as a model tRNA methyltransferase and applied this protocol to gain mechanistic insights into how TrmK recognizes the substrate tRNAs. In theory, this protocol can be used unaltered for studying enzymes that catalyze modifications at the Watson-Crick face such as 1-methyladenosine (m1A), 3-methylcytosine (m3C), 3-methyluridine (m3U), 1-methylguanosine (m1G), and N2,N2-dimethylguanosine (m22G).


Assuntos
Anticódon , RNA de Transferência , RNA de Transferência/metabolismo , Códon/genética , Biossíntese de Proteínas , tRNA Metiltransferases/genética , tRNA Metiltransferases/química , tRNA Metiltransferases/metabolismo
8.
J Biol Chem ; 299(12): 105443, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37949221

RESUMO

The methyltransferase Trm10 modifies a subset of tRNAs on the base N1 position of the ninth nucleotide in the tRNA core. Trm10 is conserved throughout Eukarya and Archaea, and mutations in the human gene (TRMT10A) have been linked to neurological disorders such as microcephaly and intellectual disability, as well as defects in glucose metabolism. Of the 26 tRNAs in yeast with guanosine at position 9, only 13 are substrates for Trm10. However, no common sequence or other posttranscriptional modifications have been identified among these substrates, suggesting the presence of some other tRNA feature(s) that allow Trm10 to distinguish substrate from nonsubstrate tRNAs. Here, we show that substrate recognition by Saccharomyces cerevisiae Trm10 is dependent on both intrinsic tRNA flexibility and the ability of the enzyme to induce specific tRNA conformational changes upon binding. Using the sensitive RNA structure-probing method SHAPE, conformational changes upon binding to Trm10 in tRNA substrates, but not nonsubstrates, were identified and mapped onto a model of Trm10-bound tRNA. These changes may play an important role in substrate recognition by allowing Trm10 to gain access to the target nucleotide. Our results highlight a novel mechanism of substrate recognition by a conserved tRNA modifying enzyme. Further, these studies reveal a strategy for substrate recognition that may be broadly employed by tRNA-modifying enzymes which must distinguish between structurally similar tRNA species.


Assuntos
Conformação de Ácido Nucleico , Nucleotídeos , RNA de Transferência , Saccharomyces cerevisiae , tRNA Metiltransferases , Humanos , Nucleotídeos/metabolismo , RNA de Transferência/química , RNA de Transferência/genética , RNA de Transferência/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Especificidade por Substrato , tRNA Metiltransferases/química , tRNA Metiltransferases/metabolismo
9.
Cancer Biol Ther ; 24(1): 2263921, 2023 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-37800580

RESUMO

RNA methyltransferase nucleolar protein p120 (NOP2), commonly referred to as NOP2/Sun RNA methyltransferase family member 1 (NSUN1), is involved in cell proliferation and is highly expressed in various cancers. However, its role in high-grade serous ovarian cancer (HGSOC) remains unclear. Our study investigated the expression of NOP2 in HGSOC tissues and normal fimbria tissues, and found that NOP2 was significantly upregulated in HGSOC tissues. Our experiments showed that NOP2 overexpression promoted cell proliferation in vivo and in vitro and increased the migration and invasion ability of HGSOC cells in vitro. Furthermore, we identified Rap guanine nucleotide exchange factor 4 (RAPGEF4) as a potential downstream target of NOP2 in HGSOC. Finally, our findings suggest that the regulation of NOP2 and RAPGEF4 may depend on m5C methylation levels.


Assuntos
Neoplasias Ovarianas , RNA , Humanos , Feminino , Metiltransferases/genética , Neoplasias Ovarianas/genética , Proliferação de Células , Proteínas Nucleares/metabolismo , Fatores de Troca do Nucleotídeo Guanina , tRNA Metiltransferases/genética , tRNA Metiltransferases/metabolismo
10.
mBio ; 14(5): e0141623, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37589464

RESUMO

IMPORTANCE: As deficiencies in tRNA modifications have been linked to human diseases such as cancer and diabetes, much research has focused on the modifications' impacts on translational regulation in eukaryotes. However, the significance of tRNA modifications in bacterial physiology remains largely unexplored. In this paper, we demonstrate that the m7G tRNA methyltransferase TrmB is crucial for a top-priority pathogen, Acinetobacter baumannii, to respond to stressors encountered during infection, including oxidative stress, low pH, and iron deprivation. We show that loss of TrmB dramatically attenuates a murine pulmonary infection. Given the current efforts to use another tRNA methyltransferase, TrmD, as an antimicrobial therapeutic target, we propose that TrmB, and other tRNA methyltransferases, may also be viable options for drug development to combat multidrug-resistant A. baumannii.


Assuntos
Acinetobacter baumannii , Pneumonia , Animais , Humanos , Camundongos , Acinetobacter baumannii/metabolismo , Acinetobacter baumannii/patogenicidade , Farmacorresistência Bacteriana Múltipla/genética , Estresse Oxidativo , Pneumonia/microbiologia , Pneumonia/patologia , RNA de Transferência/genética , RNA de Transferência/metabolismo , tRNA Metiltransferases/genética , tRNA Metiltransferases/metabolismo
11.
EMBO Rep ; 24(10): e56808, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37642556

RESUMO

Nervous system function rests on the formation of functional synapses between neurons. We have identified TRMT9B as a new regulator of synapse formation and function in Drosophila. TRMT9B has been studied for its role as a tumor suppressor and is one of two metazoan homologs of yeast tRNA methyltransferase 9 (Trm9), which methylates tRNA wobble uridines. Whereas Trm9 homolog ALKBH8 is ubiquitously expressed, TRMT9B is enriched in the nervous system. However, in the absence of animal models, TRMT9B's role in the nervous system has remained unstudied. Here, we generate null alleles of TRMT9B and find it acts postsynaptically to regulate synaptogenesis and promote neurotransmission. Through liquid chromatography-mass spectrometry, we find that ALKBH8 catalyzes canonical tRNA wobble uridine methylation, raising the question of whether TRMT9B is a methyltransferase. Structural modeling studies suggest TRMT9B retains methyltransferase function and, in vivo, disruption of key methyltransferase residues blocks TRMT9B's ability to rescue synaptic overgrowth, but not neurotransmitter release. These findings reveal distinct roles for TRMT9B in the nervous system and highlight the significance of tRNA methyltransferase family diversification in metazoans.


Assuntos
Saccharomyces cerevisiae , tRNA Metiltransferases , Animais , tRNA Metiltransferases/genética , tRNA Metiltransferases/metabolismo , Metilação , Saccharomyces cerevisiae/genética , Uridina/química , Uridina/genética , Uridina/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo
12.
Nucleic Acids Res ; 51(16): 8691-8710, 2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37395448

RESUMO

5-Methyluridine (m5U) is one of the most abundant RNA modifications found in cytosolic tRNA. tRNA methyltransferase 2 homolog A (hTRMT2A) is the dedicated mammalian enzyme for m5U formation at tRNA position 54. However, its RNA binding specificity and functional role in the cell are not well understood. Here we dissected structural and sequence requirements for binding and methylation of its RNA targets. Specificity of tRNA modification by hTRMT2A is achieved by a combination of modest binding preference and presence of a uridine in position 54 of tRNAs. Mutational analysis together with cross-linking experiments identified a large hTRMT2A-tRNA binding surface. Furthermore, complementing hTRMT2A interactome studies revealed that hTRMT2A interacts with proteins involved in RNA biogenesis. Finally, we addressed the question of the importance of hTRMT2A function by showing that its knockdown reduces translation fidelity. These findings extend the role of hTRMT2A beyond tRNA modification towards a role in translation.


Assuntos
RNA de Transferência , tRNA Metiltransferases , Animais , Humanos , Mamíferos/genética , Metilação , RNA/metabolismo , RNA de Transferência/metabolismo , tRNA Metiltransferases/metabolismo
13.
Neoplasma ; 70(3): 340-349, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37498063

RESUMO

Hepatocellular carcinoma (HCC) is a common malignant tumor with high mortality. Our previous study has confirmed that XPD acts as an anti-oncogene and is downregulated in HCC. The mechanism of XPD downregulation in HCC is unclear. In this work, we obtained the datasets related to HCC patients from GSE76427, LIRI-JP, and TCGA-LIHC cohorts. Among 15 m5C regulators (NSUN2, NSUN3, NSUN4, NSUN5, NSUN6, NSUN7, DNMT1, TRDMT1, DNMT3A, DNMT3B and NOP2, TET1, TET2, and TET3, ALYREF), 14 m5C regulators were upregulated in tumor tissues of HCC patients, except for TET2. HCC patients were divided into Cluster A and B with different m5C methylation patterns. Cluster B was enriched in metabolism-related signaling pathways, and Cluster A was prominently associated with the cell cycle signaling pathway. Moreover, XPD was positively correlated with NOP2. Cluster B exhibited upregulation of XPD and had an obvious survival advantage with respect to Cluster A. Additionally, NOP2 and XPD were downregulated in HCC tumors and cells. In vitro assays revealed that NOP2 overexpression enhanced XPD expression by elevating the m5C methylation of XPD, which contributed to inhibit proliferation, migration, and invasion of HCC cells. In conclusion, this work demonstrated that XPD mRNA stability was elevated by NOP2-mediated m5C methylation modification and then inhibited the malignant progression of HCC, suggesting that XPD may be a potential target for HCC treatment.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Metilação , Metiltransferases/genética , Oxigenases de Função Mista/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Transdução de Sinais , tRNA Metiltransferases/metabolismo
14.
Genet Med ; 25(9): 100900, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37226891

RESUMO

PURPOSE: 5-methylcytosine RNA modifications are driven by NSUN methyltransferases. Although variants in NSUN2 and NSUN3 were associated with neurodevelopmental diseases, the physiological role of NSUN6 modifications on transfer RNAs and messenger RNAs remained elusive. METHODS: We combined exome sequencing of consanguineous families with functional characterization to identify a new neurodevelopmental disorder gene. RESULTS: We identified 3 unrelated consanguineous families with deleterious homozygous variants in NSUN6. Two of these variants are predicted to be loss-of-function. One maps to the first exon and is predicted to lead to the absence of NSUN6 via nonsense-mediated decay, whereas we showed that the other maps to the last exon and encodes a protein that does not fold correctly. Likewise, we demonstrated that the missense variant identified in the third family has lost its enzymatic activity and is unable to bind the methyl donor S-adenosyl-L-methionine. The affected individuals present with developmental delay, intellectual disability, motor delay, and behavioral anomalies. Homozygous ablation of the NSUN6 ortholog in Drosophila led to locomotion and learning impairment. CONCLUSION: Our data provide evidence that biallelic pathogenic variants in NSUN6 cause one form of autosomal recessive intellectual disability, establishing another link between RNA modification and cognition.


Assuntos
Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Humanos , Deficiência Intelectual/genética , Homozigoto , Transtornos do Neurodesenvolvimento/genética , Metiltransferases/genética , Metiltransferases/metabolismo , RNA , Linhagem , tRNA Metiltransferases/genética , tRNA Metiltransferases/metabolismo
15.
Sci China Life Sci ; 66(10): 2295-2309, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37204604

RESUMO

TRMT1 is an N2-methylguanosine (m2G) and N2,N2-methylguanosine (m22G) methyltransferase that targets G26 of both cytoplasmic and mitochondrial tRNAs. In higher eukaryotes, most cytoplasmic tRNAs with G26 carry m22G26, although the majority of mitochondrial G26-containing tRNAs carry m2G26 or G26, suggesting differences in the mechanisms by which TRMT1 catalyzes modification of these tRNAs. Loss-of-function mutations of human TRMT1 result in neurological disorders and completely abrogate tRNA:m22G26 formation. However, the mechanism underlying the independent catalytic activity of human TRMT1 and identity of its specific substrate remain elusive, hindering a comprehensive understanding of the pathogenesis of neurological disorders caused by TRMT1 mutations. Here, we showed that human TRMT1 independently catalyzes formation of the tRNA:m2G26 or m22G26 modification in a substrate-dependent manner, which explains the distinct distribution of m2G26 and m22G26 on cytoplasmic and mitochondrial tRNAs. For human TRMT1-mediated tRNA:m22G26 formation, the semi-conserved C11:G24 serves as the determinant, and the U10:A25 or G10:C25 base pair is also required, while the size of the variable loop has no effect. We defined the requirements of this recognition mechanism as the "m22G26 criteria". We found that the m22G26 modification occurred in almost all the higher eukaryotic tRNAs conforming to these criteria, suggesting the "m22G26 criteria" are applicable to other higher eukaryotic tRNAs.


Assuntos
Doenças do Sistema Nervoso , tRNA Metiltransferases , Humanos , Metilação , RNA de Transferência/genética , RNA de Transferência/metabolismo , tRNA Metiltransferases/genética , tRNA Metiltransferases/metabolismo
16.
Adv Sci (Weinh) ; 10(12): e2206542, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36786012

RESUMO

Cancer stem-like cells (CSCs) have a unique translation mode, but little is understood about the process of elongation, especially the contribution of tRNA modifications to the maintenance of CSCs properties. Here, it is reported that, contrary to the initial aim, a tRNA-modifying methylthiotransferase CDKAL1 promotes CSC-factor SALL2 synthesis by assembling the eIF4F translation initiation complex. CDKAL1 expression is upregulated in patients with worse prognoses and is essential for maintaining CSCs in rhabdomyosarcoma (RMS) and common cancers. Translatome analysis reveals that a group of mRNAs whose translation is CDKAL1-dependent contains cytosine-rich sequences in the 5' untranslated region (5'UTR). Mechanistically, CDKAL1 promotes the translation of such mRNAs by organizing the eIF4F translation initiation complex. This complex formation does not require the enzyme activity of CDKAL1 but requires only the NH2 -terminus domain of CDKAL1. Furthermore, sites in CDKAL1 essential for forming the eIF4F complex are identified and discovered candidate inhibitors of CDKAL1-dependent translation.


Assuntos
Fator de Iniciação 4F em Eucariotos , Neoplasias , Humanos , Fator de Iniciação 4F em Eucariotos/genética , Fator de Iniciação 4F em Eucariotos/metabolismo , Biossíntese de Proteínas/genética , RNA Mensageiro/genética , tRNA Metiltransferases/genética , tRNA Metiltransferases/metabolismo
17.
J Zhejiang Univ Sci B ; 24(1): 50-63, 2023 Jan 15.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-36632750

RESUMO

Accumulating evidence has confirmed the links between transfer RNA (tRNA) modifications and tumor progression. The present study is the first to explore the role of tRNA methyltransferase 5 (TRMT5), which catalyzes the m1G37 modification of mitochondrial tRNAs in hepatocellular carcinoma (HCC) progression. Here, based on bioinformatics and clinical analyses, we identified that TRMT5 expression was upregulated in HCC, which correlated with poor prognosis. Silencing TRMT5 attenuated HCC proliferation and metastasis both in vivo and in vitro, which may be partially explained by declined extracellular acidification rate (ECAR) and oxygen consumption rate (OCR). Mechanistically, we discovered that knockdown of TRMT5 inactivated the hypoxia-inducible factor-1 (HIF-1) signaling pathway by preventing HIF-1α stability through the enhancement of cellular oxygen content. Moreover, our data indicated that inhibition of TRMT5 sensitized HCC to doxorubicin by adjusting HIF-|1α. In conclusion, our study revealed that targeting TRMT5 could inhibit HCC progression and increase the susceptibility of tumor cells to chemotherapy drugs. Thus, TRMT5 might be a carcinogenesis candidate gene that could serve as a potential target for HCC therapy.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , tRNA Metiltransferases , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Hipóxia Celular , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Transdução de Sinais/genética , tRNA Metiltransferases/genética , tRNA Metiltransferases/metabolismo
18.
Mol Neurobiol ; 60(4): 2223-2235, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36646969

RESUMO

Epigenetic processes have become increasingly relevant in understanding disease-modifying mechanisms. 5-Methylcytosine methylations of DNA (5mC) and RNA (m5C) have functional transcriptional and RNA translational consequences and are tightly regulated by writer, reader and eraser effector proteins. To investigate the involvement of 5mC/5hmC and m5C effector proteins contributing to the development of dementia neuropathology, RNA sequencing data of 31 effector proteins across four brain regions was examined in 56 aged non-affected and 51 Alzheimer's disease (AD) individuals obtained from the Aging, Dementia and Traumatic Brain Injury Study. Gene expression profiles were compared between AD and controls, between neuropathological Braak and CERAD scores and in individuals with a history of traumatic brain injury (TBI). We found an increase in the DNA methylation writers DNMT1, DNMT3A and DNMT3B messenger RNA (mRNA) and a decrease in the reader UHRF1 mRNA in AD samples across three brain regions whilst the DNA erasers GADD45B and AICDA showed changes in mRNA abundance within neuropathological load groupings. RNA methylation writers NSUN6 and NSUN7 showed significant expression differences with AD and, along with the reader ALYREF, differences in expression for neuropathologic ranking. A history of TBI was associated with a significant increase in the DNA readers ZBTB4 and MeCP2 (p < 0.05) and a decrease in NSUN6 (p < 0.001) mRNA. These findings implicate regulation of protein pathways disrupted in AD and TBI via multiple pre- and post-transcriptional mechanisms including potentially acting upon transfer RNAs, enhancer RNAs as well as nuclear-cytoplasmic shuttling and cytoplasmic translational control. The targeting of such processes provides new therapeutic avenues for neurodegenerative brain conditions.


Assuntos
Doença de Alzheimer , Lesões Encefálicas Traumáticas , Humanos , Idoso , Doença de Alzheimer/patologia , RNA/metabolismo , Lesões Encefálicas Traumáticas/patologia , Metilação de DNA , Metiltransferases/metabolismo , RNA Mensageiro/metabolismo , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , tRNA Metiltransferases/genética , tRNA Metiltransferases/metabolismo
19.
Clin Exp Pharmacol Physiol ; 50(4): 307-315, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36628934

RESUMO

N6-methyladenosine (m6A) modification is the most common mRNA modification that is considered a new layer of mRNA epigenetic regulation. Demethylase fat mass and obesity-associated protein (FTO) are important in the dynamic regulation of m6A, but their role in gastric cancer (GC) is not fully understood. This study revealed that FTO and CDKAL1 were up-regulated in GC cells and tissue. CDKAL1 is the downstream target of FTO-mediated m6A modification, with FTO promoting GC cell proliferation through CDKAL1 and inducing mitochondrial fusion, eventually causing GC chemoresistance. In conclusion, FTO contributes to the increasing resistance of GC cells to 5-fluorouracil (5-Fu) by upregulating CDKAL1 and inducing mitochondrial fusion.


Assuntos
Neoplasias Gástricas , Humanos , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Resistencia a Medicamentos Antineoplásicos , Epigênese Genética , Dinâmica Mitocondrial , RNA Mensageiro/genética , Neoplasias Gástricas/genética , tRNA Metiltransferases/genética , tRNA Metiltransferases/metabolismo
20.
FEBS Lett ; 597(8): 1149-1163, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36708127

RESUMO

tRNA methyltransferase 9 (Trm9)-catalysed tRNA modifications have been shown to translationally enhance the DNA damage response (DDR). Here, we show that Saccharomyces cerevisiae trm9Δ, distinct DNA repair and spindle assembly checkpoint (SAC) mutants are differentially sensitive to the aminoglycosides tobramycin, gentamicin and amikacin, indicating DDR and SAC activation might rely on translation fidelity, under aminoglycoside stress. Further, we report that the DNA damage induced by aminoglycosides in the base excision repair mutants ogg1Δ and apn1Δ is mediated by reactive oxygen species, which induce the DNA adduct 8-hydroxy deoxyguanosine. Finally, the synergistic effect of tobramycin and the DNA-damaging agent bleomycin to sensitize trm9Δ and the DDR mutants mlh1Δ, rad51Δ, mre11Δ and sgs1Δ at significantly lower concentrations compared with wild-type suggests that cells with tRNA modification dysregulation and DNA repair gene defects can be selectively sensitized using a combination of translation inhibitors and DNA-damaging agents.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Aminoglicosídeos/farmacologia , tRNA Metiltransferases/genética , tRNA Metiltransferases/metabolismo , tRNA Metiltransferases/farmacologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Antibacterianos/farmacologia , Inibidores da Síntese de Proteínas/farmacologia , Reparo do DNA , Dano ao DNA , Tobramicina/farmacologia , RNA de Transferência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA